Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543795

RESUMO

Genomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants. Here, we show that for both Illumina and Oxford Nanopore sequencing platforms, downstream bioinformatic protocols used by industry, government, and academic groups resulted in different virus sequences from same sample. These bioinformatic workflows produced consensus genomes with differences in single nucleotide polymorphisms, inclusion and exclusion of insertions, and/or deletions, despite using the same raw sequence as input datasets. Here, we compared and characterized such discrepancies and propose a specific suite of parameters and protocols that should be adopted across the field. Consistent results from bioinformatic workflows are fundamental to SARS-CoV-2 and future pathogen surveillance efforts, including pandemic preparation, to allow for a data-driven and timely public health response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Fluxo de Trabalho , Biologia Computacional
2.
Astrobiology ; 23(12): 1348-1367, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38079228

RESUMO

Democratizing genomic data science, including bioinformatics, can diversify the STEM workforce and may, in turn, bring new perspectives into the space sciences. In this respect, the development of education and research programs that bridge genome science with "place" and world-views specific to a given region are valuable for Indigenous students and educators. Through a multi-institutional collaboration, we developed an ongoing education program and model that includes Illumina and Oxford Nanopore sequencing, free bioinformatic platforms, and teacher training workshops to address our research and education goals through a place-based science education lens. High school students and researchers cultivated, sequenced, assembled, and annotated the genomes of 13 bacteria from Mars analog sites with cultural relevance, 10 of which were novel species. Students, teachers, and community members assisted with the discovery of new, potentially chemolithotrophic bacteria relevant to astrobiology. This joint education-research program also led to the discovery of species from Mars analog sites capable of producing N-acyl homoserine lactones, which are quorum-sensing molecules used in bacterial communication. Whole genome sequencing was completed in high school classrooms, and connected students to funded space research, increased research output, and provided culturally relevant, place-based science education, with participants naming three novel species described here. Students at St. Andrew's School (Honolulu, Hawai'i) proposed the name Bradyrhizobium prioritasuperba for the type strain, BL16AT, of the new species (DSM 112479T = NCTC 14602T). The nonprofit organization Kauluakalana proposed the name Brenneria ulupoensis for the type strain, K61T, of the new species (DSM 116657T = LMG = 33184T), and Hawai'i Baptist Academy students proposed the name Paraflavitalea speifideiaquila for the type strain, BL16ET, of the new species (DSM 112478T = NCTC 14603T).


Assuntos
Exobiologia , Instituições Acadêmicas , Humanos , Havaí , Genômica , Bactérias
3.
Microorganisms ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004814

RESUMO

Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx2f were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx2f-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx2f-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans.

4.
bioRxiv ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380755

RESUMO

During the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak. Our results indicate that bioinformatic workflows can yield consensus genomes with different single nucleotide polymorphisms, insertions, and/or deletions even when using the same raw sequence input datasets. We introduce the use of a specific suite of parameters and protocols that greatly improves the agreement among pipelines developed by diverse organizations. Such consistency among bioinformatic pipelines is fundamental to SARS-CoV-2 and future pathogen surveillance efforts. The application of analysis standards is necessary to more accurately document phylogenomic trends and support data-driven public health responses.

5.
PeerJ ; 10: e13821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093336

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spread globally and is being surveilled with an international genome sequencing effort. Surveillance consists of sample acquisition, library preparation, and whole genome sequencing. This has necessitated a classification scheme detailing Variants of Concern (VOC) and Variants of Interest (VOI), and the rapid expansion of bioinformatics tools for sequence analysis. These bioinformatic tools are means for major actionable results: maintaining quality assurance and checks, defining population structure, performing genomic epidemiology, and inferring lineage to allow reliable and actionable identification and classification. Additionally, the pandemic has required public health laboratories to reach high throughput proficiency in sequencing library preparation and downstream data analysis rapidly. However, both processes can be limited by a lack of a standardized sequence dataset. Methods: We identified six SARS-CoV-2 sequence datasets from recent publications, public databases and internal resources. In addition, we created a method to mine public databases to identify representative genomes for these datasets. Using this novel method, we identified several genomes as either VOI/VOC representatives or non-VOI/VOC representatives. To describe each dataset, we utilized a previously published datasets format, which describes accession information and whole dataset information. Additionally, a script from the same publication has been enhanced to download and verify all data from this study. Results: The benchmark datasets focus on the two most widely used sequencing platforms: long read sequencing data from the Oxford Nanopore Technologies platform and short read sequencing data from the Illumina platform. There are six datasets: three were derived from recent publications; two were derived from data mining public databases to answer common questions not covered by published datasets; one unique dataset representing common sequence failures was obtained by rigorously scrutinizing data that did not pass quality checks. The dataset summary table, data mining script and quality control (QC) values for all sequence data are publicly available on GitHub: https://github.com/CDCgov/datasets-sars-cov-2. Discussion: The datasets presented here were generated to help public health laboratories build sequencing and bioinformatics capacity, benchmark different workflows and pipelines, and calibrate QC thresholds to ensure sequencing quality. Together, improvements in these areas support accurate and timely outbreak investigation and surveillance, providing actionable data for pandemic management. Furthermore, these publicly available and standardized benchmark data will facilitate the development and adjudication of new pipelines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Benchmarking , Biologia Computacional , Análise de Sequência
6.
ACS Synth Biol ; 11(10): 3216-3227, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130255

RESUMO

Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.


Assuntos
Petróleo , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Engenharia Metabólica , Ácido Pirúvico/metabolismo , Genômica , RNA/metabolismo , Petróleo/metabolismo
7.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630311

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal "hot spots". Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.

8.
Bioinformatics ; 38(10): 2700-2704, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561186

RESUMO

SUMMARY: Genomics has become an essential technology for surveilling emerging infectious disease outbreaks. A range of technologies and strategies for pathogen genome enrichment and sequencing are being used by laboratories worldwide, together with different and sometimes ad hoc, analytical procedures for generating genome sequences. A fully integrated analytical process for raw sequence to consensus genome determination, suited to outbreaks such as the ongoing COVID-19 pandemic, is critical to provide a solid genomic basis for epidemiological analyses and well-informed decision making. We have developed a web-based platform and integrated bioinformatic workflows that help to provide consistent high-quality analysis of SARS-CoV-2 sequencing data generated with either the Illumina or Oxford Nanopore Technologies (ONT). Using an intuitive web-based interface, this workflow automates data quality control, SARS-CoV-2 reference-based genome variant and consensus calling, lineage determination and provides the ability to submit the consensus sequence and necessary metadata to GenBank, GISAID and INSDC raw data repositories. We tested workflow usability using real world data and validated the accuracy of variant and lineage analysis using several test datasets, and further performed detailed comparisons with results from the COVID-19 Galaxy Project workflow. Our analyses indicate that EC-19 workflows generate high-quality SARS-CoV-2 genomes. Finally, we share a perspective on patterns and impact observed with Illumina versus ONT technologies on workflow congruence and differences. AVAILABILITY AND IMPLEMENTATION: https://edge-covid19.edgebioinformatics.org, and https://github.com/LANL-Bioinformatics/EDGE/tree/SARS-CoV2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Genoma Viral , Genômica , Humanos , Pandemias , SARS-CoV-2/genética
9.
mSphere ; 6(6): e0075921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851164

RESUMO

The Antarctic marine ecosystem harbors a wealth of biological and chemical innovation that has risen in concert over millennia since the isolation of the continent and formation of the Antarctic circumpolar current. Scientific inquiry into the novelty of marine natural products produced by Antarctic benthic invertebrates led to the discovery of a bioactive macrolide, palmerolide A, that has specific activity against melanoma and holds considerable promise as an anticancer therapeutic. While this compound was isolated from the Antarctic ascidian Synoicum adareanum, its biosynthesis has since been hypothesized to be microbially mediated, given structural similarities to microbially produced hybrid nonribosomal peptide-polyketide macrolides. Here, we describe a metagenome-enabled investigation aimed at identifying the biosynthetic gene cluster (BGC) and palmerolide A-producing organism. A 74-kbp candidate BGC encoding the multimodular enzymatic machinery (hybrid type I-trans-AT polyketide synthase-nonribosomal peptide synthetase and tailoring functional domains) was identified and found to harbor key features predicted as necessary for palmerolide A biosynthesis. Surveys of ascidian microbiome samples targeting the candidate BGC revealed a high correlation between palmerolide gene targets and a single 16S rRNA gene variant (R = 0.83 to 0.99). Through repeated rounds of metagenome sequencing followed by binning contigs into metagenome-assembled genomes, we were able to retrieve a nearly complete genome (10 contigs) of the BGC-producing organism, a novel verrucomicrobium within the Opitutaceae family that we propose here as "Candidatus Synoicihabitans palmerolidicus." The refined genome assembly harbors five highly similar BGC copies, along with structural and functional features that shed light on the host-associated nature of this unique bacterium. IMPORTANCE Palmerolide A has potential as a chemotherapeutic agent to target melanoma. We interrogated the microbiome of the Antarctic ascidian, Synoicum adareanum, using a cultivation-independent high-throughput sequencing and bioinformatic strategy. The metagenome-encoded biosynthetic machinery predicted to produce palmerolide A was found to be associated with the genome of a member of the S. adareanum core microbiome. Phylogenomic analysis suggests the organism represents a new deeply branching genus, "Candidatus Synoicihabitans palmerolidicus," in the Opitutaceae family of the Verrucomicrobia phylum. The Ca. Synoicihabitans palmerolidicus 4.29-Mb genome encodes a repertoire of carbohydrate-utilizing and transport pathways, a chemotaxis system, flagellar biosynthetic capacity, and other regulatory elements enabling its ascidian-associated lifestyle. The palmerolide producer's genome also contains five distinct copies of the large palmerolide biosynthetic gene cluster that may provide structural complexity of palmerolide variants.


Assuntos
Macrolídeos/análise , Microbiota , Urocordados/microbiologia , Verrucomicrobia/genética , Animais , Regiões Antárticas , Família Multigênica , Filogenia , RNA Ribossômico 16S
10.
Front Bioinform ; 1: 826370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303775

RESUMO

The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for very specific purposes on samples collected by individual investigators or groups. While these developments have been quite instructive, the ability to compare microbiome data generated by many groups of researchers is impeded by the lack of standardized application of bioinformatics methods. Additionally, there are few examples of broad bioinformatics workflows that can process metagenome, metatranscriptome, metaproteome and metabolomic data at scale, and no central hub that allows processing, or provides varied omics data that are findable, accessible, interoperable and reusable (FAIR). Here, we review some of the challenges that exist in analyzing omics data within the microbiome research sphere, and provide context on how the National Microbiome Data Collaborative has adopted a standardized and open access approach to address such challenges.

11.
Front Chem ; 9: 802574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004620

RESUMO

Complex interactions exist between microbiomes and their hosts. Increasingly, defensive metabolites that have been attributed to host biosynthetic capability are now being recognized as products of host-associated microbes. These unique metabolites often have bioactivity targets in human disease and can be purposed as pharmaceuticals. Polyketides are a complex family of natural products that often serve as defensive metabolites for competitive or pro-survival purposes for the producing organism, while demonstrating bioactivity in human diseases as cholesterol lowering agents, anti-infectives, and anti-tumor agents. Marine invertebrates and microbes are a rich source of polyketides. Palmerolide A, a polyketide isolated from the Antarctic ascidian Synoicum adareanum, is a vacuolar-ATPase inhibitor with potent bioactivity against melanoma cell lines. The biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites are encoded in the genomes of the producers as discrete genomic elements. A candidate palmerolide BGC was identified from a S. adareanum microbiome-metagenome based on a high degree of congruence with a chemical structure-based retrobiosynthetic prediction. Protein family homology analysis, conserved domain searches, active site and motif identification were used to identify and propose the function of the ∼75 kbp trans-acyltransferase (AT) polyketide synthase-non-ribosomal synthase (PKS-NRPS) domains responsible for the stepwise synthesis of palmerolide A. Though PKS systems often act in a predictable co-linear sequence, this BGC includes multiple trans-acting enzymatic domains, a non-canonical condensation termination domain, a bacterial luciferase-like monooxygenase (LLM), and is found in multiple copies within the metagenome-assembled genome (MAG). Detailed inspection of the five highly similar pal BGC copies suggests the potential for biosynthesis of other members of the palmerolide chemical family. This is the first delineation of a biosynthetic gene cluster from an Antarctic microbial species, recently proposed as Candidatus Synoicihabitans palmerolidicus. These findings have relevance for fundamental knowledge of PKS combinatorial biosynthesis and could enhance drug development efforts of palmerolide A through heterologous gene expression.

12.
Bioinformatics ; 37(7): 1024-1025, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-32777813

RESUMO

SUMMARY: Polymerase chain reaction-based assays are the current gold standard for detecting and diagnosing SARS-CoV-2. However, as SARS-CoV-2 mutates, we need to constantly assess whether existing PCR-based assays will continue to detect all known viral strains. To enable the continuous monitoring of SARS-CoV-2 assays, we have developed a web-based assay validation algorithm that checks existing PCR-based assays against the ever-expanding genome databases for SARS-CoV-2 using both thermodynamic and edit-distance metrics. The assay-screening results are displayed as a heatmap, showing the number of mismatches between each detection and each SARS-CoV-2 genome sequence. Using a mismatch threshold to define detection failure, assay performance is summarized with the true-positive rate (recall) to simplify assay comparisons. AVAILABILITY AND IMPLEMENTATION: The assay evaluation website and supporting software are Open Source and freely available at https://covid19.edgebioinformatics.org/#/assayValidation, https://github.com/jgans/thermonucleotide BLAST and https://github.com/LANL-Bioinformatics/assay_validation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
13.
Life (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374112

RESUMO

Phenotypic health effects, both positive and negative, have been well studied in association with the consumption of alcohol in humans as well as several other mammals including mice. Many studies have also associated these same health effects and phenotypes to specific members of gut microbiome communities. Here we utilized a chronic plus binge ethanol feed model (Gao-binge model) to explore microbiome community changes across three independent experiments performed in mice. We found significant and reproducible differences in microbiome community assemblies between ethanol-treated mice and control mice on the same diet absent of ethanol. We also identified significant differences in gut microbiota occurring temporally with ethanol treatment. Peak shift in communities was observed 4 days after the start of daily alcohol consumption. We quantitatively identified many of the bacterial genera indicative of these ethanol-induced shifts including 20 significant genera when comparing ethanol treatments with controls and 14 significant genera based on temporal investigation. Including overlap of treatment with temporal shifts, we identified 25 specific genera of interest in ethanol treatment microbiome shifts. Shifts coincide with observed presentation of fatty deposits in the liver tissue, i.e., Alcoholic Liver Disease-associated phenotype. The evidence presented herein, derived from three independent experiments, points to the existence of a common, reproducible, and characterizable "mouse ethanol gut microbiome".

14.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498449

RESUMO

Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64° 46'S, 64° 03'W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3-V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)-20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.


Assuntos
Macrolídeos/análise , Microbiota , Urocordados/microbiologia , Animais , Regiões Antárticas , Ilhas , RNA Ribossômico 16S
16.
Sci Rep ; 10(1): 1723, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015354

RESUMO

There is growing interest in reconstructing phylogenies from the copious amounts of genome sequencing projects that target related viral, bacterial or eukaryotic organisms. To facilitate the construction of standardized and robust phylogenies for disparate types of projects, we have developed a complete bioinformatic workflow, with a web-based component to perform phylogenetic and molecular evolutionary (PhaME) analysis from sequencing reads, draft assemblies or completed genomes of closely related organisms. Furthermore, the ability to incorporate raw data, including some metagenomic samples containing a target organism (e.g. from clinical samples with suspected infectious agents), shows promise for the rapid phylogenetic characterization of organisms within complex samples without the need for prior assembly.


Assuntos
Burkholderia/genética , Ebolavirus/genética , Escherichia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Saccharomyces/genética , Software , Algoritmos , Evolução Biológica , Mapeamento Cromossômico , Biologia Computacional , Conjuntos de Dados como Assunto , Evolução Molecular , Metagenoma , Filogenia , Validação de Programas de Computador
17.
Front Genet ; 10: 904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608125

RESUMO

Sequencing-based analyses of microbiomes have traditionally focused on addressing the question of community membership and profiling taxonomic abundance through amplicon sequencing of 16 rRNA genes. More recently, shotgun metagenomics, which involves the random sequencing of all genomic content of a microbiome, has dominated this arena due to advancements in sequencing technology throughput and capability to profile genes as well as microbiome membership. While these methods have revealed a great number of insights into a wide variety of microbiomes, both of these approaches only describe the presence of organisms or genes, and not whether they are active members of the microbiome. To obtain deeper insights into how a microbial community responds over time to their changing environmental conditions, microbiome scientists are beginning to employ large-scale metatranscriptomics approaches. Here, we present a comprehensive review on computational metatranscriptomics approaches to study microbial community transcriptomes. We review the major advancements in this burgeoning field, compare strengths and weaknesses to other microbiome analysis methods, list available tools and workflows, and describe use cases and limitations of this method. We envision that this field will continue to grow exponentially, as will the scope of projects (e.g. longitudinal studies of community transcriptional responses to perturbations over time) and the resulting data. This review will provide a list of options for computational analysis of these data and will highlight areas in need of development.

18.
J Mol Diagn ; 21(1): 99-110, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268944

RESUMO

Next-generation sequencing (NGS) for infectious disease diagnostics is a relatively new and underdeveloped concept. If this technology is to become a regulatory-grade clinical diagnostic, standardization in the form of locked-down assays and firmly established underlying processes is necessary. Targeted sequencing, specifically by amplification of genomic signatures, has the potential to bridge the gap between PCR- and NGS-based diagnostics; however, existing NGS assay panels lack validated analytical techniques to adjudicate high background and error-prone NGS data. Herein, we present the Diagnostic targETEd seQuencing adjudicaTion (DETEQT) software, consisting of an intuitive bioinformatics pipeline entailing a set of algorithms to translate raw sequencing data into positive, negative, and indeterminate diagnostic determinations. After basic read filtering and mapping, the software compares abundance and quality metrics against heuristic and fixed thresholds. A novel generalized quality function provides an amalgamated quality score for the match between sequence reads of an assay and panel targets, rather than considering each component factor independently. When evaluated against numerous assay samples and parameters (mock clinical, human, and nonhuman primate clinical data sets; diverse amplification strategies; downstream applications; and sequence platforms), DETEQT demonstrated improved rejection of false positives and accuracies >95%. Finally, DETEQT was implemented in the user-friendly Empowering the Development of Genomics Expertise (EDGE) bioinformatics platform, providing a complete, end-to-end solution that can be operated by nonexperts in a clinical laboratory setting.


Assuntos
Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Algoritmos , Biblioteca Gênica , Genômica/métodos , Humanos
19.
Hum Microb J ; 132019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506046

RESUMO

Background: Acute Coronary Syndrome (ACS) is a leading cause of morbidity and mortality. Perturbed gut- microbiota (dysbiosis) and increased intestinal permeability (leaky-gut) with translocation of bacterial antigens, play critical role in obesity and metabolic syndrome, which are also major ACS risk factors. Additionally, Trimethylamine-N-Oxide (TMAO), a metabolite produced by phylum Proteobacteria in gut is implicated in developing ACS. As Proteobacteria is a major source of translocated antigen lipopolysaccharides (LPS), we hypothesized that ACS patients have leaky-gut condition characterized by dysbiosis with increased Proteobacteria, leading to elevated blood levels of TMAO and LPS. Methods: In a pilot case-control study, we enrolled 19 ACS patients (within 72-h of cardiac events) and 19 healthy-controls. Gut barrier function was determined using lactulose-to-mannitol urinary excretion ratio (L/M ratio). Stool microbiome composition was examined using16S sequencing and predictive functional analysis for LPS biosynthesis pathway by PICRUSt tool. Serum TMAO and LPS levels were measured. Results: ACS patients had increased Gammaproteobacteria compared to controls:1.8 ±3.0 vs. 0.2 ±0.4% (P =0.04). Though Proteobacteria level was increased but not statistically significant: 4.1 ±3.8 vs. 2.1 ±1.7% (P =0.056). L/M-ratio was three times higher in ACS patients; 0.06 ±0.07 vs 0.023 ±0.02, (P =0.014). Surprisingly, there was no difference in the mean serum LPS or TMAO levels. However, PICRUSt analysis indicated increased Proteobacteria population increasingly contributed to LPS biosynthesis in ACS patients only. Conclusions: ACS patients likely to have leaky-gut and perturbed gut microbiota. Further studies are required to precisely define the role of dysbiosis in ACS.

20.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959256

RESUMO

Ammonia is a metabolic waste product excreted by aquatic organisms that causes toxicity when it accumulates. Aquaria and aquaculture systems therefore use biological filters that promote the growth of nitrifiers to convert ammonia to nitrate. Ammonia-oxidizing bacteria (AOB) have been isolated from aquarium biofilters and are available as commercial supplements, but recent evidence suggests that ammonia-oxidizing archaea (AOA) are abundant in aquarium biofilters. In this study, we report the cultivation and closed genome sequence of the novel AOA representative "Candidatus Nitrosotenuis aquarius," which was enriched from a freshwater aquarium biofilter. "Ca Nitrosotenuis aquarius" oxidizes ammonia stoichiometrically to nitrite with a concomitant increase in thaumarchaeotal cells and a generation time of 34.9 h. "Ca Nitrosotenuis aquarius" has an optimal growth temperature of 33°C, tolerates up to 3 mM NH4Cl, and grows optimally at 0.05% salinity. Transmission electron microscopy revealed that "Ca Nitrosotenuis aquarius" cells are rod shaped, with a diameter of ∼0.4 µm and length ranging from 0.6 to 3.6 µm. In addition, these cells possess surface layers (S-layers) and multiple proteinaceous appendages. Phylogenetically, "Ca Nitrosotenuis aquarius" belongs to the group I.1a Thaumarchaeota, clustering with environmental sequences from freshwater aquarium biofilters, aquaculture systems, and wastewater treatment plants. The complete 1.70-Mbp genome contains genes involved in ammonia oxidation, bicarbonate assimilation, flagellum synthesis, chemotaxis, S-layer production, defense, and protein glycosylation. Incubations with differential inhibitors indicate that "Ca Nitrosotenuis aquarius"-like AOA contribute to ammonia oxidation within the aquarium biofilter from which it originated.IMPORTANCE Nitrification is a critical process for preventing ammonia toxicity in engineered biofilter environments. This work describes the cultivation and complete genome sequence of a novel AOA representative enriched from a freshwater aquarium biofilter. In addition, despite the common belief in the aquarium industry that AOB mediate ammonia oxidation, the present study suggests an in situ role for "Ca Nitrosotenuis aquarius"-like AOA in freshwater aquarium biofilters.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Água Doce/microbiologia , Filtros Microporos/microbiologia , Purificação da Água/instrumentação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Genoma Arqueal , Nitrificação , Nitritos/metabolismo , Oxirredução , Filogenia , Águas Residuárias/química , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...